Baldassarre, L. et al. (2016) Mid-Infrared Plasmonic Platform Based on n- Doped Ge-on-Si: Molecular Sensing with Germanium Nano-Antennas on Si. In: 41st International Conference on Infrared, Millimeter, and Terahertz Waves
نویسندگان
چکیده
CMOS-compatible, heavily-doped semiconductor films are very promising for applications in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate n-type doped germanium epilayers grown on Si substrates. We design and realize Ge nanoantennas on Si substrates demonstrating the presence of localized plasmon resonances, and exploit them for molecular sensing in the mid-infrared.
منابع مشابه
Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates.
Midinfrared plasmonic sensing allows the direct targeting of unique vibrational fingerprints of molecules. While gold has been used almost exclusively so far, recent research has focused on semiconductors with the potential to revolutionize plasmonic devices. We fabricate antennas out of heavily doped Ge films epitaxially grown on Si wafers and demonstrate up to 2 orders of magnitude signal enh...
متن کاملHeavily-Doped Germanium on Silicon with Activated Doping Exceeding 1020 cm–3 as an Alternative to Gold for Mid-Infrared Plasmonics
Ge-on-Si has been demonstrated as a platform for Si foundry compatible plasmonics. We use laser thermal annealing to demonstrate activated doping levels >1020 cm-3 which allows most of the 3 to 20 μm mid-infrared sensing window to be covered with enhancements comparable to gold plasmonics.
متن کاملUltra-doped n-type germanium thin films for sensing in the mid-infrared
A key milestone for the next generation of high-performance multifunctional microelectronic devices is the monolithic integration of high-mobility materials with Si technology. The use of Ge instead of Si as a basic material in nanoelectronics would need homogeneous p- and n-type doping with high carrier densities. Here we use ion implantation followed by rear side flash-lamp annealing (r-FLA) ...
متن کاملFabrication of mid-infrared plasmonic antennas based on heavily doped germanium thin films
In this work, the growth and the fabrication of heavily doped germanium plasmonic antennas for mid-infrared applications is reported. By tuning the phosphorus doping concentration and the antenna geometrical parameters, plasma frequencies for targeting the 8-15 μm spectral region are achieved. 1 μm thick, heavily doped (2.3 × 10 cm ) germanium was used to fabricate dipole antennas of 800 nm wid...
متن کامل